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Summary 

A thermodynamic theory of materials u-:h memory 

was developed i n  terms of difference h is tor ies  by 

Coleman. 

of past h i s tor ies .  

i n  the  form of the  Clausius-hhem inequal i ty  is  taken 

as a r e s r r i c t i o n  on processes a s  well as  on constitu- 

t i v e  equations. 

f o r  materials with fading memory is developed f o r  the 

thermodynamic theory. 

The author has developed the theory i n  terms 

The second law of thermodynamics 

The Coleman-No11 approximation theory 

' A p a r a l l e l  development of the  thetmodynamic theory 

and the approximation theory i s  car r ied  out fo r  f l u ids  

with fading memory. For the zero-order approximation, 

the  pErfect f l u id ,  the  usual c l a s s i ca l  resu l t s  a r e  

obtained. For the  f i r s t -order  approximation, corres- 

ponding t o  the  Newtonian f lu id ,  the cons t i tu t ive  equa- 

t ions d i f f e r  from the t r ad i t i ona l  ones because of the 

poss ib i l i t y  of ce r t a in  addi t ional  terms; r e s t r i c t ions  

a re  obtained on the new coef f ic ien ts  a s  well  as the  

c l a s s i ca l  r e s t r i c t ions  on the  usual coeff ic ients .  For 

the  second-order approximation some re s t r i c t ions  are  

obtained on the material  coeff ic ients .  

1. Introduction 

Recently two fundamental and pioneering papers 

have appeared by Coleman [la 23 on the development of 

the thermodynamics of materials with memory. Pr ior  t o  

t h i s ,  t he  mechanics of materials with memory, ignoring 

thermodynamics , had been extensively developed; many 

references a r e  given i n  references [I, 2 3 .  

t an t  development i n  the  mechanics of materials with 

AII impor- 

fading memory was an approximation theorem f o r  function- 

a l s  by Coleman and No11 [ 3 ] .  

A na tura l  next development w a s  the  appl icat ion of 

the approximation theory t o  the  thermodynamics of mater- 

i a l s  with memory. 

gram, the  author found tha t  Coleman's theory i n  terms 

of difference h is tor ies  [l, 2 3  was not en t i r e ly  cokrect 

(see the appendix Sect. 10 of t h i s  paper). It appeared 

t h a t  the thermodynamic theory i n  terms of past  h i s to r i e s  

could be a va l id  theory, however i n  [2, Sect. 91 Coleman 

only implies a summary of t ha t  theory. 

developed the thermodynamic theory i n  terms of past  

h i s to r i e s  i n  Sect. 3 of t h i s  paper. Furthermore, i n  

t h i s  theory the  Clausius-hhem inequal i ty  is taken a s  a 

r e s t r i c t i o n  on processes a s  w e l l  a s  on cons t i tu t ive  equa- 

tions. In  Sect. 4 the Coleman-No11 approximation theory 

f o r  materials with memory i s  developed f o r  the thermo- 

dynamic theory of Sect. 3 .  The foregoing r e su l t s  a r e  

special ized t o  f lu ids .  The r e s t r i c t ions  of the  Clausius- 

Duhem inequal i ty  a r e  determined f o r  perfect  f lu ids ,  l inear  

f lu ids  and the  second-order f lu id  approximation.* 

In attempting t o  carry out t h i s  pro- 

The author has 

2. Review of preliminaries 

For the  mst p a r t  t h i s  sect ion w i l l  cons is t  of a 

review of appropriate def in i t ions  and notations from 

Sects. 2 , 3 , 4  and 6 of Colemn [ l : .  

Following Coleman [la Sect. 21, we codsider a 

*See a l so  Eringen [4] which t r e a t s  general non-polar 
materials and spec i f ic  consti tut)Veequations d i f fe ren t  
from those of t h i s  work. 
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body B with mater ia l  points X. A thermodynamic process 

d i n  B i s  described by eight  functions of X and the tirme 

t. 

phys ica 1 in te rpre ta t ions  : 

The values of these functions have the  following 

(1) s p a t i a l  pos i t ion  vector = &(X,t);  here the  

function &, ca l led  the deformation function, describes 

a m t i o n  of t he  body. 

(2) The synsnetric stress tensor 2- z(X,t). 

(3) The body force vector k =  k ( X , t ) ,  per un i t  

mass, exerted on B a t  X by the  "external world". 

(4) The spec i f ic  in te rna l  enerE 8 = e(X,t j ,  per 

uni t  nmss. 

( 5 )  The spec i f ic  entropy v = T ( X , t ) ,  per uni t  mass. 

(6) The loca l  absolute temperature 8 = @(X, t ) ,  

which is assumed t o  be positive: 8 > O .  

(7) The heat flux vector q = q(X,t). 

( 8 )  The heat supply r = r ( X , t ) ;  t h i s  is the  radi- 
- -  

a t ion  energy, per un i t  mass and un i t  time, absorbed by 

B a t  X and furnished by the  "external world". 

Such a set of e ight  functions i s  cal led a t h e m -  

dynamic process i f  and only if it i s  conpatible w i t h  

the law of balance of l inear  momentum and the law of 

balance of energy: 

[&E da - f, pdv - - Jv pdv (2.1) 

Jv tr{x g d v  - j a p z  da - fv; pdv = -jvr pdv (2.2) 

w h e r e  the conservation of mass is given by 

Jv pdv = constant (2.3) 

Ifre p denotes the mass density; E = @* is the ve- 

loc i ty  gradient; a superinposed dot denotes the material 

time der ivat ive,  i.e., the der ivat ive with respect to  

t keeping X fixed; t r  is  the t race  operator; V and dv 

indicate  integrat ion Over the volume occupied by the 

body B and aV and da indicate  integrat ion over t he  

surface of the space occupied by B. 

The assumed synmetry of the  stress tensor insures 

t h a t  the -nt of -ntum is automatically balanced. 

Couple stresses, body couples, and other  e c h a n i c a l  

interact ions not included i n  g o r  h a r e  are assumed t o  

be absent. 

In  order t o  specify a themdynamic process it 

suff ices  t o  prescribe the six functions X&e,a,~ and 0. 

The remaining functions k a n d  r are then determined by 

(2.1) and (2.2). 

&re we  depart somewhat from Coleman [l] and make 

a n e w  definition. 

process fo r  a body as a thermodynamic process which 

W e  define an allowable thermodynamic 

satisfier the C:zieius->&.zz3 i2eq.ality [SI: 

We take (2.4) as a s ta te ren t  of the  Second Law of Thenm- 

dynamtcs. 

Following Coleman [l] again, it is of ten convenient 

t o  ident i fy  the material point X with i t s  posi t ion vector 

& i n  a f ixed reference configuration R and t o  w r i t e  

z= ;&cst> (2.5) 

The gradient 2 of x ( X , t )  with respect t o  X, i.e., 
-u 

E =  gst) - azq,t)iax_ (2.6) 

is the deformation gradient tensor a t  (i.e., a t  X) 

r e l a t ive  t o  the configuration R. It is w e l l  known that 

i= I,L i.e., k =  t5-l (2.7) 

It is assumed tha t  X ( X , t )  is always smDothly inver t ib le  

i n  its f i r s t  variable, Le., tha t  the inverse E-' of 5 
ex i s t s ,  or ,  equivalently, tha t  det  E #  0. 

-- 

Since %/au occurs often Coleman introduced the 

abbreviation 

- g = a/* (2.8) 

The mass density p is determined by EthrOugh the  equa- 

t ion 

P PrIIdet (2.9) 

where pr is a posi t ive number, constant i n  time and 

equal t o  the mass density i n  the reference configuration 

R. 

me spec i f ic  f r e e  energy is defined by 

* = 8 - e ~  (2.10) 



U s i n g  (2.2), (2.7) and (2.10), under appropriate m o t h -  

nee& assump.tions the d i f f e ren t i a l  equation form of the 

Clausius-Duhem inequal i ty  i s  
* 1  1 0~ 3 - $ + - tr{F" T s} - T$ - - q.g 2 0 (2.11) 

p N C I -  P O  -- 
w h e r e  y is ca l led  the spec i f ic  rate of entropy produc- 

tion. - 
Denote any of the above functions of X and t by 

cp(t). Tbe function 

J(S) = v(t - E), 0 s s c - (2.12) 

is ca l led  the h is tory  of q, a t  X up t o  t ime t. 

Next consider a function B ( t )  which is determined 

t by cp (8) for  a l l  values of s sa t i s fy ing  (2.12), that  

is B ( t )  is a functional of cpt(s). 

shall indicate  functionals by the following notation: 

In t h i s  paper we 

B ( t )  = f(cpt(S)) (2.13) 

I n  w i n g  (2.13) i t  w i l l  be understood that whenever a 

function of s, in t h i s  case (pt(s), appears as the argu- 

ment of a function, f ,  then f i s  t o  be considered a 

functional of +(s). 
A material is defined by a set of const i tut ive 

assrrmptions, which are r e s t r i c t ions  on thernudynandc 

processes. 

r i a l  as  one fo r  which 

Following Coleman w e  define a simple rpate- 

f = f(p,t(s),et(s); &, f 1 t s T s ~ ~  (2.14a,bSc,d) 

Following Coleman a themdynamlc process is sa id  

t o  be admissible i n  B i f  it is compatible with (2.14) 

a t  each point X of B and a t  a l l  times t. 

able  admissible thermodynamic process is an admissible 

t h e d y n a m i c  process tha t  is allowed by the Clausiun- 

Duhem inequality. 

i s  an admissible thermodynamic process: 

0 = O(X,t) a re  assigned f o r  a l l  t and X i n  B. 

Thus an allow- 

Coleman [l] shows that the following 

E= &(X,t) and 

Coleman r l ]  introduces the following compact nota- 

tion. 

is any tensor and 0 any scalar :  

We denote by & t h e  ordered p a i r  (FFO), where 

& = (500) (2.15) 

Let LY be a scalar, the product Ah = & is defined t o  be *= (Qgg dJ) (2.16) 

L e t  3 = (3 ,01)  and 5 - (%,%I. The sum & + 5 is 

defined t o  be 

& +&I = <pJ + b *  0, + % I  (2.17) 

The scalar-nul t ipl icat ion and addition so defined make 

the set of a l l  ordered pa i rs  (2.15) a vector space of 

dimension ten. 

def b e d  by 

An inner product and a norm 1 I are  

& &I = tras) + O,%, = J r k  (2.18) 

If zt(s) i s  the deformation gradient his tory and 

O t ( s )  is the  tenperature history, then kt(s) defined by 

A ~ ( s >  = &(t - sj = ~ t < s > ,  ct<e;;, n u - B < 0 (1.19)  
N 

is ca l led  the t o t a l  his tory o r  simply the  history. 

define Q t o  be 

We 

& -  gt, = tii(0) (2 .20 )  

Using t h i s  compact notation we  can rewrite (2.14) as  

f = f(g(s);@, f = t,s,5a 
Introducing the  generalized stress 

(2.21a,b,c,d) 

N c - ( .  LE-T. -7) = 6QITlDT. - s) (2.22) 

we  see that by (2.18) the Cleusiue-Duhem inequality 

(2.11) can be rewri t ten as 

(2.23) - 1  e y = -  * + g o  I p , - , a . p o  
where 

CI i=J &a) (2.24) 

It follows from (2.22) and (2.21b), (2 .21~)  tha t  is 

given by a functional of &'(s) which is a lso  a function 

of g, that is  
N 

N - gqt<s>; s) (2.25) 

3. ThermDdynamlc Theory i n  terms of Past Histories 

The past histolir g(s) is  defined by Coleman [2, 

Sect. 91 as the  h is tory  Ut(s) r e s t r i c t ed  t o  the open 

in te rva l  0 < s C 01, t h a t  is, 

d(s> = ~ ' ( s ) ,  o c s < m (3.1) 

For the  time being w e  w i l l  assme of $(s) only that it 

have a limit a t  s - 0 and we define 

A = l im At(s )  (3.2) 
-c 6 - 0 -  

The h is tory  At(s) is allowed t o  have a jump a t  s = 0 so 

t h a t  i n  general 
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!L+ 15 (3.3) 

pshere A i s  defined by (2.20). 
cc-, 

Pollawing Coleman 12, Sect. 91 w e  define a new 

functional f o r  the  f ree  energy * by means of 

*(t) = *@(SI; &(t)) - *(;?F(s>; &),&(t)) (3.4) 

where t h e  new functional form is  indicated by $( ; , ) 
as compared with the old form *( ; ). 

Now w e  can see that the time der ivat ive of * is 

required f o r  use i n  (2.23). 

formally take t h e  time der ivat ive of the  last term i n  

(3.4) and then make the  assumptions required t o  jus t i fy  

such a procedure. By def in i t ion  

Let us then proceed t o  

(3.5) 
1 i(t) = l h ~ ;  [*(t + k) - *(t)]  

k-0 

Then by (3.4) w e  have 

$(t + k) = *(&+k(s); &(t + k) ,  g(t + k)) (3.6) 

Now because of the possible jump i n  Lt(s) a t  s - 0 as 

indicated by (3.3), AJt) and g(t) can only have deriv- 

a t ives  for  posi t ive k, that is 

N h(t  + k) = AJt) + g(t) + o(k), 

g( t  + k) = &(t) + kiL<t) + o(k), 

k > O  

k > O  

(3.7a) 

(3.7b) 
u 

Formally w e  can make a Taylor series approximation t o  

At+k(s), namely 
4 

where w e  have made use of (2.19) and where o(k,s) in- 

dicates  t h a t  the  e r ror  term depends on s as w e l l  being 

small order k. Now since At(s) is allowed t o  suffer a 

jump discont inui ty  a t  s = 0 ,  then a t  a later ins tan t  

t + k (k > 0) the  function & 
Hence the expansion (3.8) w i l l  only be meaningful for  

s > k. 

limit as s -. 0. 

t h a t  the argurnent function ck(s) of (3.6) s a t i s f y  

(3.2) we must ass- as s - 0 that the derivative 

d&(s)/ds e x i s t  and t h a t  o(k,s)  exis t .  

t+k 
( 8 )  has a jump a t  s = k. 

This r e s t r i c t i o n  has t o  be kept i n  mind i n  the 

To be consistent with the assumption 

t 

We see from (3.5), (3.6) and (3.7) t h a t  we must 

ass- t h a t  * is di f fe ren t iab le  i n  L a n d  &. That i s ,  

there  e x i s t  functionals ah+ and a,* such t h a t  
N 5 

(3.10) 

where 

vector space and :is an a rb i t ra ry  vector. 

is an a rb i t ra ry  element i n  the ten-dimensional 

We a lso  see from (3.5), (3.6) and (3.8) tha t  $ 

mst be d i f fe ren t iab le  i n  the function $s), t h a t  is  

there  exists a functional 6* such t h a t  

where i n  order t o  be consistent with (3.2) L ( s )  must 

have a l i m i t  as s 4 0, where 6$ is a linear functional 

of IJs), and, I IJS) jjh is  a su i tab le  norm of L(s). 

As discussed by Coleman E l ] ,  w e  may consider a class 

of materials whose m e m ~ r y  fades gradually i n  t ime.  I n  

t h a t  case a sui table  norm I z(s)  lh is  one whose value 

depends more on IJs) f o r  small s than for  large s. 

Such a norm i s  

where the influence function h(s),  0 S s C - is  a 

posit ive,  monotone-decreasing, continuous function 

which goes t o  zero rapidly as s - 0). We summarize the 

above statements concerned with differe- t ia t ion with 

respect t o  &(s) as an t 

Assumption of fading memory. W e  consider a c lass  

of s ixple  materials f o r  which the spec i f ic  f ree  energy 

is d i f fe ren t iab le  i n  the past  his tory i n  terms of the 

norm (3.12) where the influence function decreases 

rapidly t o  zero as  s -. m. We note especially t h a t  the  

past  his tory must have a l i m i t  as  s -L 0, but t h a t  it 

may otherwise be badly behaved so long as  the norm 

(3.12) exists. 

A simple material  f o r  which the above assumption 

of fading memory holds w i l l  be ca l led  a v iscoe las t ic  

material. 
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Now re turning t o  the problem of evaluating (3.5), 

be subs t i tu te  (3.7a), (3.7b) and (3.8) in to  (3.6); w e  

then use (3.91, (3.10) and (3.11) and carry out formally 

the l imit ing process of (3.5) and f i n a l l y  get  

where the der ivat ives  &(t), &t) and hence i(t) may only 

e x i s t  i n  the posi t ive direction. 

above procedure it is necessary t o  make a weak addition- 

a l  assumption that* 

In  carrying out the  

1 t  
lhi; 6Q(s); k(t>, &(t> I o(k,s)) = 0 
k-w 

(3.14) 

We a l so  w r i t e  the entropy, s t r e s s ,  heat  f lux  and 

generalized-stress functionals i n  terms of the past  
.. 

history AL(s): 
-r 

f = f@(s) ;  5, &I, f = h,%$Z 

Then subst i tut ing (3.13), (3 .15~)  and (3.15d) i n  

(3.15a ,b ,c ,d) 

the  inequality (2.23) w e  ge t  

ev = { g (gw; 6, B) - aAi (g(s) ;  N L d} 8+ --.. + 6t(&s); & & I $s&s)) - g & p ; & & ) * & -  1 t  

(3.16) 

Now Coleman [la Sect. 41 has shown tha t  a t  a given 

t - ag.c(&(s); & 8) j L *  0 
N 

material  point X and time t we can a r b i t r a r i l y  choose 

the past  his tory &(s) and the quant i t ies  AJt),&(t),~(t) 

and be cer ta in  tha t  there ex is t s  a t  l eas t  one admiss- 

i b l e  thermodynamic process corresponding t o  th i s .  

our discussion i n  t h i s  section, i(t) may only be defined 

i n  the  posi t ive d i rec t ion  f o r  jump histor ies .  Also from 

*Dr. C . 4 .  Wang has kindly pointed out t o  me that Prof- 

essor V. J. Mizel and he proved i n  a private discussion 

t 

From 

N 

our discussion it is c lear  that &(t) i n  the  posi t ive 

d i rec t ion  may be chosen a r b i t r a r i l y  for  jump his tor ies .  

Since can be assigned a r b i t r a r i l y  i n  (3.16) with 
N 

everything else held fixed i t  i s  c lear  (see [la Sect. 6 1  

f o r  a detai led argument) tha t  

$ = *(&s); ;?) (3.17) 

That i s ,  the spec i f ic  f r e e  energy cannot be a function 

of the temperature gradient. Thus (3.16) reduces t o  

Since & can be assigned a r b i t r a r i l y  holding every- 

thing else fixed we conclude t h a t  

c = g ($(SI; = a,&s); (3.19) - N 

We observe tha t  the generalized s t r e s s  cannot be a 

function of the temperature gradient 5 tha t  the gener- 

a l ized s t r e s s  is the der ivat ive of the spec i f ic  f ree  

energy with respect t o  the present value of the t o t a l  

history,  b and t h a t  the assumption of fading memory 

must apply t o  the generalized stress. Next we can 

assign & t h e  value zero independently of the other 

quant i t ies  and get  

(3.20) 

That i s ,  the internal  diss ipat ion o [l, Sect. 6 1  cannot 

be negative. 

t d t  
80 I 6S(&(s); &(s) 2 0 

Then f i n a l l y  w e  must have 

N q(&(s); L, N g 5 pea, (3.21) 

The r e s u l t s  (3.19). (3.20) and (3.21) a re  s imilar  

t o  those obtained by Coleman [la Sect. 61. 

valent  of our equation (3.19) is  a l so  given by Coleman 

and Gurtin [SI. 

The equi- 

A jump i n  0 i s ,  according t o  Coleman 
the following much m r e  complete theorem regarding (3.13); 

If + s a t i s f i e s  (3.11) f o r  a l l  L(s) which obeys 

k ( s > l h  < = and, i f  one writes + L(s)=(&(s),b(s), 

det  k(s) # 0, b(s)  > 0 then (3.13) holds f o r  a l l  &(s) 

provided t h a t  M;(s)/ dsll, < = i n  the sense tha t  

A (s) is  absolutely continuous, and, the derivative 

d$(s)/ds, which ex is t s  a l m s t  everywhere, has a f i n i t e  

and Gurtin, a therm-mechanical acceleration wave. Thus 

equations (3.19)to (3.21) mey be sa id  t o  hold for  mater- 

i a l s  i n  which accelerat ion waves are  allowed. However 

f o r  a given c lass  of const i tut ive equations the allow- 

ance of acceleration waves may impose intolerable  

res t r ic t ions  on the const i tut ive equations. 

examine the inequality (3.18) with the assumption tha t  

t 
Y Let us now 

h-norm. 
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we shall only insist that it hold f o r  emooth admissible 

t h e d y n a m i c  processes. 

and i(t) may be assigned a rb i t r a r i l y ,  but then 

For solooth processes &(s),&(t) 

(3.22a ,b) d t  & =  b, Q =  - & ! p l s = o  
For s m t h  processes the re su l t  (3.17) s t i l l  a p p l h s .  

Nothing fur ther  can be deduced from (3.18) i n  a general 

way, unless we ass- tha t  the  generalized-stress func- 

t i ona l  g d o e s  not  depend on the tenperature gradient, 

that is 

& =  z (&); &I (3.23) 

In  such a case w e  make the following deductions from the 

inequality (3.18) : 

00' = {z(&s); - a,t@cs); N a>} i+ 
+ a*(&); & 2 0 (3.24) 

(3.25) 

w h e r e  we shall c a l l  0' the t o t a l  dissipation. Note t h a t  

(3.23), (3.24) and (3.25) a l so  apply t o  adiabatic mater- 

ials Q(t) = OJ with & a paremeter i n  

special case of homthermal deformations (g(t) = 0) .  

- q&(s);  h, E) E *  

and t o  the 

CI - 
We have observed that the Clausius-l)uhem inequal- 

i t y  may be taken t o  impose r e s t r i c t ions  on a l l w a b l e  

processes as w e l l  as on cons t i tu t ive  equations. 

t h a t  there  mst be a give and take between const i tut ive 

equations and allowable processes : 

processes one w i s h e s  t o  consider the greater  are the re- 

s t r i c t ione  on the  cons t i tu t ive  equations whereas f o r  

mre general cons t i tu t ive  equations one has fewer allow- 

able  processes. 

W e  find 

the mre allowable 

4. doproximation Theoq 
t We introduce the difference past his tory kd(s) 

def ined by 

At(S> &a(') + & (4.1) 

* *(d(e); @ &, b) (4.2) 

-T 

We may rewrite (3.17) in the form 

'he form (4.2) can be wri t ten  even i f  (4.6) below did 

not hold, so that by (4.1) the  form (4.2) bas the  pro- 

per ty  

*(&(E); &,$ = )(&(S) - 3 & + $ 9 (4.3) 

fo r  a rb i t ra ry  E. 
ing way: 

Further, we s p l i t  (4.2) i n  the follow- 

* *O(&, 9 + *'(&d(s); &* g (4.4) 

w h e r e  

*o&, @ *Cs &, @, &, @ = 0(4*5a,b) 

With (4.5b) and the fact that 

l i m  At ( 8 )  = 2 s- .ud 
(4.6) 

w e  a r e  i n  posi t ion t o  apply the Coleman-No11 appraxi- 

mation theorem fo r  functionals 131 t o  (4.4). We f i r s t  

have t o  extend the previousiy postulated assumption of 

fading memory by assuming that the functional + is 

n-times d i f fe ren t iab le  i n  terms of 4d(~). 
ing that &(s) is di f fe ren t iab le  n-times a t  8 = 0 ,  the  

Coleman-No11 approximation theorem f o r  slow mt ione  

yields  

t Then assum- 

where 

(4.8) i 2 $ &:(s)lg=O = (-l) dti 5 
and each term i n  the  sumnation is l inear  in each of t he  

9. For the n-th order approximation the  s w t i o n  in 

(4.7) i s  over a l l  sets of integers ( j  l , . . . jk)  sa t i s fy-  

ing  

- 

1 * jl  %..s f k  s 11, j l  +..a+ j k  s n (4.9) 

The asymptotic approximation sign -has the  fol loving 

spec i f ic  meaning i n  t h i s  a r t i c l e :  

QJs) of the past his tory &(e) is defined by 

The retardat ion 

t 

&e) = &m), 0 CY < 1 (4.10) 

We see that as the retardat ion fac tor  C Y -  0 the  his tory 

var ies  mre and mre slowly. 

theorem applied t o  (4.4) is 

Then the  Coleman-No11 

where the sumPation is governed by (4.9). 

It follows from (4.7) t ha t  



b l o g o u s  appropimations can be written for  the general- 

fzed-stress functional and for the heat-flov fuactioual. 

Using the  property (4.3) it can be Shawn t h a t  the d i f fe r -  

e n t i a l  i n  (3.20) has the approximation form 

We note that on subs t i t u t ing  the approximations in to  

(3.18) s d  t s k i q  e11 e-mmmtims t o  the n-th order, a l l  

terms i n  (3.18) have been approximated t o  order (n + 1). 

For the jump his tory resu l t s  (3.19), (3.20) and 

(3.211, w e  see, f i r s t  of a l l ,  by subst i tut ing the 

approximations i n  (3.19) tha t  

(3.20). 

s a t i s f y  (3.21). 

The approximation f o r  the  heat f lux ouet then 

For the  case of h i s tor ies  smooth a t  s = 0 the approx- 

imations m i s t  a l l  be subst i tuted i n  (3.18) which then 

must be sa t i s f ied .  Note t h a t  even though w e  consider 

smooth h is tor ies ,  the jlmp-history operator a, may yield 

non-eerc values. We now put the above resu l t s  i n  "c- 

ponent" form, t h a t  is  i n  terms of the deformation grad- 

ien t  tensor and the termperature. 

N 

Equation (4.7) becomes 

where the surrmation is over a l l  sets of indices 

(jl,...Djk) s a t i s fy ing  (4.9) and over a l l  sets of 

indices (Il,. . . , i k )  sat isfying 

( p J , q , ~ O ) (  1 is a k-l inear  If::::::: Each of the term 

f u x t f o n .  

(4.13) and the other approximation forms can be written. 

Appropriate "component1* fortm of (4.12), 

5.  Thennodynamics of Viscoelastic Fluids 

Ue wish t o  apply the foregoing theory t o  visco- 

e l a s t i c  f luids .  

f i r s t  defined and discussed by No11 [7]. 

i za t ion  of the  const i tut ive equatiom t o  include the- 

dynamics is, following Coleuun [l, Sect. 133. 

Purely pechanical sirpple f lu ids  were 

The general- 

(5. l a ,  b ,c ,d) 
f = fGt(S), ot(s); P ( t ) ,  dt)), f *,s,sa 

w h e r e  

The functionals i n  (5.1) a re  isotropic  i n  z t ( s )  and 

(5.3) 

and A t o  be ordered pa i r  (p,O) with a sca la r  product 

defined by 

A1 Ib = PlPa  + 01% (5.4) 
t 

Y 
The past  his tory A (e) and the quantity & are  again 

defined according t o  (3.1) and (3.2). Corresponding 

t o  (3.3) we note i n  par t icular  that  

=sp # E =  g ( 0 )  (5.5) 

Now 

_ a  f ( s ) l S d  5 (5.6) 

the 1-et Bivlin-Ericksen tensor. Thus 

N i =  (3, 4) (5.7) 

E =  (#p b - 7) 

The C l a u s i u s - l k r h r p  i r rqua l i ty  retains the form (2.23) 

i f  the generalized stress is nmi deftned t o  be 

(5.8) 

Then in term of past h is tor ies  the const i tut ive 

equations (5.1)D can be wr i t t en  in the form 

f f (&(E); A, E), f $, 53 (5.9aDb, c )  

We consider now mdi f i ca t ions  of the general theory 

of Sect. 3 which are needed for  f luids .  

tha t  &(I)) depends on the  tine t through the subscript  t 

Ue note i n  (5.2) 



of &(s) indicat ing the changing reference configur- 

a t ion  ae well as through the  h is tory  superscr ipt  t. 

can be eas i ly  shown that 

b 

It 

replaced by 

6. Approximation Theory f o r  Viscoelastic Fliuds 

Basically the approximation theory of Sect. 4 applies 

t o  v iscoe las t ic  f lu ids  w i t h  &replaced €or the most par t  

corresponding t o  (4.13) takes on a somewhat d i f fe ren t  

1.t is c lea r  t h a t  the equivalent for  f l u ids  of the 
where 

on and as w e l l  a s  on &s). Since &and b a lso  

depend on Qand Ewe can deduce no r e l a t ion  on the 

( s , Q r ,  p,Q) <Kil , .  . - 32,. . . K2) 
I F  11 I 

(6.4) 
i (: Iklt i 1  . i k  

(11.. . jk )  j1 * '* jk  

generalized stress corresponding t o  (3.19) of the general 

theory. 

on 8 w e  can conclude tha t  

On t he  other  hand, s ince &(s) does not depend 

I 

where I - V&S); A) - -a,t(&s); A) (5.16) I 

MO = (-dm g; €iJs)ls,o j m  We cannot ge t  re la t ions  corresponding t o  (3.20) or  (3.21). 
- T  -T r 

(6.5) 

$m =, K i n  (6.6) 

For smooth h is tor ies  nothing can be deduced from s - Ar -1 + E E  kym + &E-% 1 
(5.15) unless w e  assume tha t  the generalized stress does 

not depend on the temperature gradient, i n  which case the 

only conclusions from the inequality (5.15) a re  

and 

as given by (4.18). I 

7. Perfect Fliud Approximation 1 
In  Sects. 7, 8 and 9 we  s h a l l  invest igate  the 
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r e s t r i c t i o n s  plaFed on the  approximate cons i t i tu t ive  

eq*%ations f o r  viscoele- t ic  fluids by the C l a U s i U s - h h , ~ ~ ~ ~  

inequal i ty  (5.17). We w i l l  assume t h a t  the generalized 

stress i s  not a function of the temperature gradient 

and w e  shall not study here the r e s t r i c t i o n s  placed by 

(3.25) on the const i tut ive approximation f o r  the heat  

f lux.  

I n  terms of the retardat ion fac tor  (Y of Sect. 4, 

From (7.1) it follows that 

iimr(eO') 1 = a, 2 o 
Q-0 

(7.4) 

For h i s t o r i e s  with a jump a t  s = 0, each of the 

variables A, (3-ik-T<t-<tF-15, p,i,&,g, ir,8: can 

be varied independently, so that the inequality (7.4) 

%(&,A) - ae$o(&,A) 

trsto(&,A)g - 0 
tr$to(&sA) 0 

a,r$o(&,A) = 0 

From (7.10) w e  conclude t h a t  to is not a 

From (7.8) and (7.9) we  conclude t h a t  to 

function of 5. Therefore we have 

t - lo (A)  

Since &(A,A) cannot vanish we conclude 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

function of 8,. 

cannot be a 

(7.11) 

from (7.5) 

t h a t  it must be isotropic  and thus from (7.6) w e  have 

T - -  p2+$O(A)L (7.12) 

From (7.7) we have 

T - - a,tO(A) (7.13) 

We note tha t  the resu l t s  (7.11), (7.12) and (7.13) 

define the c l a s s i c a l  perfect  f luid.  Also these r e s u l t s  

do not depend on the jump (which may be a shock wave a s  

w e l l  as  an acceleration wave) and therefore it can eas i ly  

be ver i f ied  t h a t  these resu l t s  are necessary as  w e l l  as 

suf f ic ien t  conditions t h a t  (5.17) be s a t i s f i e d  f o r  

smooth h is tor ies  as  w e l l  as jump histor ies .  

8. Linear Approximation 

Using t h e  r e s u l t s  (7.11), (7.12) and (7.13), the 

approximations f o r  $, ;and 11 t o  order n = 1 are  given 

below. It w i l l  be assumed that a l l  coeff ic ients  a re  

functions of & and A unless indicated otherwise. 

t - to(A) + A ( t r g )  + Be: 

- T - - p2+fo(A)I- + 
ll -- a8fo(A) + a(tr&) + be: 

(8.1) 

h (trG)& + hr + &:I- (8.2) 

(8.3) 

We have used the porperty that the above equations nust  

be isotropic  i n  b. 
The conditions (7.5) t o  (7.10) made a, i n  (7.1) 

r 

vanish. L e t  us therefore rewrite (7.1) i n  the form 

= a,P + o ( 2 )  2 o (8.4) 

where 

r e,, while holding everything else fixed, w e  must have 

A = B = O  (8.7) 
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Then the  t n e q ~ l i ~  (8.6) reducce t o  
r 

- [a(tr&) + bo:] 6 2 0 

For the funp history case, tha t  Is ,  for acceler- 

a t i o n  waves, 

everything else, so tha t  it can e a s i l y  be seen that a l l  

the f i rs t -order  coeff ic ients  vanish and the n = 1 ca8e 

reduces t o  the  perfect  f luid.  

t'ne iinear i i u i d  cannot s a t i s f y  t'ne Ciausius--em 

inequality for  a rb i t r a ry  acceleration waves, which is  

the well-known r e s u l t  of Duhem f o r  the c l a s s i c a l  l inear  

viscous f l u i d  [SI. 

and 6 can be varied independently of 

Thus we conclude t h a t  

For the suooth his tory caee we drop the superscript 

r and we have, using 0 

al = 

O,, 

[ AA(trh)a + b t r g ]  + 
2P 2 

w h e r e  now the  coefficients are  functions of A only. 

simple analysie wing (7.3) yields  the c l a s s i c a l  resu l t s  

A 

(8.10) 2 
3 

p r o ,  A + - p Z O  

as well as  the resu l t s  

(8.11) 

Thus, in sumary, we have for  n = 1 

rt - rto(M (8. U) 

T - - paa,rt0u);L + UA)(tr&),€ + P(A& + dl& 
(8.13) 

(8.14) 

u 

9 - - berto(A) + a(h)t r& + b(h) 0, 

with the re s t r i c t lone  (8.10) and (8.11). We observe 

that these const i tut ive equations d i f f e r  from the tradi-  

t i o n a l  const i tut ive equations f o r  l inear  f lu ids  because 

of the  poss ib i l i t y  of the presence of the l a s t  term i n  

(8.13) and the last two terns in (8.14). It rmst be 

kept i nmind  tha t  (8.12),(8.13) and (8.14) is a f i r s t -  

order slaw motion approximation t o  viscoelast ic  fluids. 

Whether or  not these equations could represent a f lu id  

undergoing rapid motions i g  a question that remains t o  

be investigated.  Thus these equations should be applied 

with caution t o  probleps such an boundary-layer flow 

paet a send- in fh i t e  p la te  or "shock structure". 

Questions concerning varioua types of approximation t o  

v i scoe la s t i c  flows and t h e i r  respective ranges have 

been discussed recently r8.93. 

9. Second-order Approximation 

Since the linear approximation does not sustain 

accelerat ion waves, we consider only snmoth uotions 

here. 

From the resu l t s  (8.10) and (8.11) we  see by (8.9) 

tha t  al i s  not ident ical ly  zero. 

in the form 

W e  now rewrite (8.4) 

00' = a l d  + hd' + o ( 2 )  (9.1) 

For those cases where al vanishes, t h a t  is & - %and 

0, - 0, it follows that 

l i d  (00') = + 2 0 (9.3) 0 9 a 9  
We w r i t e  the secoui-order approximation t o  $ i n  t h e  form 

rt - t o  + f ( % , @ d  + c tr&a + Do, 

g(k ,o1abaoa )  - ctr(& - tkmTh - r ~ ~ ' l r ,  + 

(9.4) 

men by (6.4) it can be seen that has the  form 

80 
(9.5) 

Since every term i n  g i s  of degree three,  t h a t  is the 

subscripts of the factors  i n  each term mst t o t a l  three,  

we can see tha t  g vanishes when h and 0, vanish. We can 

conclude tha t  the condition (9.3) requires that  

C - D = O  (9.6) 

and that there a re  no other res t r ic t ions  placed by (9.3). 

10. Appendix on Coleman's Difference-History Theory 

The difference his tory &(e) of the his tory kt(s)  

is defined by 

(10.1) t - At(s)  - + & & -  $(O) = &(t> 

Coleman [1,2] writes for  the f r e e  energy functional 

rt - rt(g(S)) - t(&(s); g (10.2) 

Coleman [1,(5.4)](see (10.6) below) does not use (10.2) 

with the r e s t r i c t i o n  tha t  the functional argument vanish 

a t  s - 0. 

should have the property 

Clearly then the right-hand s ide of (10.2) 

*(&(e); ;?) = rt(&(s) - 9 k +  9 (10.3) 
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f o r  a rb i t r a ry  Q. 

Nou let us &ne equation [l, (5.14)] which defines 

the  d i f f e r e n t i a l  operator V (omitting the dependence on 

: 

v*(&);@ Q = 6 * ( p ) ;  &Jr?'(s>> (10.4) 

where $(e) is the  constant his tory 

(10.5) t 
z ( s ) = &  O S s < m  

The right-hand s ide  of (10.4) is defined by [l, (5.4)]: 

C(L(s) + Q5d; 9 
= * C b > ; W  + 6tC(s);hJQt(s)) + 4 1  QtCs>l 1 

(f0.6) 

where the norm 1 $(e) 1, is defined by (3.12). From 

(10.5) and (3.12) we  have 

and therefore  

o(fl llh) = O ( 1  11 (10.8) 

Also by (10.5) and the property (10.3). the left-hand 

s ide  of (10.6) can be wri t ten as  

*(gs) + ,.(SI;@ - #(gs ) ;A+  9 

*(@I + $(s);@ 

(10.9) 

Subst i tut ing (10.8) and (10.9) i n  (10.6) w e  have 

a *(x(s);$ + ~+(L(S);~Q,(S)) + Gt(s) 1,) 
(10.10) 

But by comparison with [1, ( 5 . 5 ) ]  w e  see that 

~ ( p ) ; & ~ w  - aL*(mwg p. (10.11) 

Now comparing (10.4) and (10.11) we  see tha t  

v t ( ~ ( ~ ) ; a  = aA*(p);u (10.12) - 
That is, the  d i f f e ren t i a l  operators V and a are identi- 

cal. 

theory is that the  generalized stress by [I, (6.24)], 

is ident ica l ly  zero. Of course, such a r e su l t  is un- 

acceptable. L e t  us leave t h i s  dilemma fo r  the moment 

and tu rn  t o  another point. 

0 
The main consequence of t h i s  r e su l t  i n  Coleman's 

Let us examine equations [2, (5.6111: 

f - *(.&(e) - Lt(s);A+ 8 - *'*(a 
This equation is supposed t o  give the value ** of the 

f r ee  energy corresponding t o  the  h is tory  Aye) defined 

by 

(10.13) 

(10.14) 

Lt*(s) is cal led the jump continuation of kt(s) with 

jump J,. Naw applying the  property (10.3) we  see tha t  

(10.13) reduces t o  

v = t (&(s);g (10.15) 

That is, the f r e e  energy is unaffected by a sudden jump. 

'&is is a physically unacceptable resul t .  

(10 .3)  w a s  brought about by the equivalence [2,(5.5)]: 

(10.16) 

Equation 

t t 
&*(SI = - 2 (81, = L 

which i n  turn  w a s  due t o  the use of the norm (3.12). 

In  the  author's opinion, the use of the norm (3.12) 

for  h i s tor ies  with a jump a t  s = 0 is not physically 

reasonable. Furthermore, it is the use of the norm 

(3.12) along with our r e su l t  (10.12) t h a t  leads t o  the  

previous deduction tha t  the generalized stress is iden- 

t i c a l l y  zero. Coleman's reasoning on pp. 17 and 18 of 

[l], which leads t o  the  generalized stress re l a t ion  

[l, (6.24)], hinges on considering a jump i n  q t ( s ) / d e  

a t  s - 0 and the  use of the norm (3.12) with such junp 

histor ies .  
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Corrigenda and Addenda t o  

ON THE THERMODYNAMIC AND APPROXIMATION THEORY 

OF VISCOELASTIC MATERIALS 

D. C .  Leigh 

Equat ion ( 3 . 8 j  shouid be r e p i a c e d  by 

Now t h e  l i n e a r  f u n c t i o n a l  6 4  of  (3.11) can be r e p r e s e n t e d  by a n  

i n t e g r a l :  

( 2 )  
t m t 

6g(Lr<s>; L,E/IJS)) 5 $'(AT(z)y s ; N -  A a g> * N r < s ) d s  L 0 

where $l (At (z )y  s - A g)  s o  d e f i n e d  i s  a f u n c t i o n a l  over  's. 
y e y -  u - r  

Then ( 3 . 1 3 )  i s  r e p l a c e d  by 



4 - 2 -  

( 3 . 1 8 )  i s  r e p l a c e d  by 

(5 I 

and ( 3 . 2 0 )  i s  r e p l a c e d  by 

We observe  t h a t  the second terrr, iil tile i n t e r n a l  d i s s i p a t i o n  i n e _ g a l i t y  

( 6 )  is  non-zero o n l y  i f  shock walres (jumps i n  A) occur  i n  t h e  p r o c e s s e s  

under  cons i d e r a t i o n .  

H 

The remainder  of 4 3 i s  unchanged; s e v e r a l  consequent  changes 

s h o u l d  be made i r i  #$ 4 ,  5 ,  5 and 7 ;  $4 8 and 9 a r e  unchanged. 

f r o m 4 4  oil i s  v a l i d  i f  w e  l i m i t  o u r  c o n s i d e r a t i o n s  t o  p r o c e s s e s  i n  which 

s h o c l s  do n o t  o c c u r ,  b u t  a c c e l e r a t i o n  waves may o r  may not  occur  a s  t h e  

c a s e  may be i n  t h e  paper .  

A c t u a l l y  


